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I. REVIEW

Last time we:
(1) Given a Fuchsian group Γ and a fundamental domain D for Γ, showed how we

can obtain a fundamental domain for any subgroup as a union of translates of D.
(2) Applied this in the particular case of Γ = Γ(1) = PSL2(Z) and the subgroup Γ(2).
(3) Specialized some results on covering spaces and monodromy to the particular case

of the covering H→ Γ\H where Γ is a Fuchsian group.
(4) In particular, used Riemann-Hurwitz to give a formula for the genus of Γ(N)\H.

II. EQUIVALENCE OF RIEMANN SURFACES AND ALGEBRAIC CURVES

Early on in the course, we saw that smooth projective plane curves were examples of
compact Riemann surfaces. For a smooth projective plane curve C given by equation
F(X, Y, Z) = 0 for some homogeneous polynomial F, we defined an atlas of compatible
holomorphic charts which give C the structure of a Riemann surface.

In fact, much more is true. There is an equivalence of categories{
compact, connected
Riemann surfaces

}
∼←→

{
smooth, projective

algebraic curves over C

}
.

This is an instance of a more general family of results known as GAGA—Géométrie
algébrique et géométrie analytique. These results, due mainly to Serre, show that there is
an analytification functor that, given a scheme X of finite type over C, produces a complex
analytic space Xan, and that this defines an equivalence of categories.

Remark 1. Not all algebraic curves are plane curves! There are some curves that can’t
be smoothly embedded into P2. One is easy way to see this is using the degree-genus
formula: a smooth projective plane curve given by a homogeneous degree d polynomial
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F(X, Y, Z) = 0 has genus
(

d− 1
2

)
. So the genus of any smooth projective plane curve is

a triangular number: 0, 1, 3, 6, 10, . . ..
For an explicit example, write X, Y, Z, W be the homogeneous coordinates of P3, and

consider the curve C given by the equations

X2 + Y2 + Z2 − ZW + W2 = 0

X3 + 2XYZ + YZW = 0 .

One can show that C is a smooth projective curve of genus 4, so it can’t be embedded in
P2 by the observation above.

The main take away is that we can pass freely between the category of smooth alge-
braic curves and the category of Riemann surfaces, phrasing our results in whichever
terminology is more suitable.

[Mention example of elliptic curves and tori, p. 101 of GGD]

III. BELYI’S THEOREM

Belyi’s Theorem tells us which complex algebraic curves can actually be defined over
Q.

Definition 2. Let X be a projective curve over C. Then X is defined over a field K ⊆ C

if there exists a collection of polynomials with coefficients in K whose vanishing locus is
isomorphic to X.

This is a bit more subtle than it may seem. Even if X is defined by polynomials whose
coefficients are not in K, we may be able to find a different set of polynomials whose
coefficients are in K that define an isomorphic curve. For instance, the curve

E1 : y2 = x3 − π3

is defined over Q(π), and from this equation, it doesn’t look like it’s defined over Q.
However, E1 is in fact isomorphic to E2 : y2 = x3 − 1 via the isomorphism

E1 → E2

(x, y) 7→
(

x
π

,
y

π
√

π

)
.

E2 is evidently defined over Q, so E1 is, too.
Recall the definition of a Belyi map:

Definition 3. A Belyi map is a morphism ϕ : X → P1 of (smooth, projective) algebraic
curves that is unramified outside of {0, 1, ∞}.

Theorem 4 (Belyi’s Theorem). Let X be a smooth, projective curve over C. Then X is defined
over Q iff there exists a Belyi map ϕ : X → P1.

Remark 5.
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• A curve X can be defined as the vanishing set of finitely many polynomials, each
of which has only finitely many nonzero coefficients. So if X is defined over Q,
we can find polynomials all of whose coefficients lie in Q. But since there are only
finitely many of them, they must in fact lie inside some finite extension K of Q.
• In Belyi’s (and the textbook’s) statement, they only assume that ϕ is ramified over

at most 3 points, rather than explicitly using 0, 1, ∞. However, these two conditions
are actually equivalent since Aut(P1) ∼= PSL2(C) acts triply transitively on P1.
That is, given any 3 distinct points w1, w2, w3 ∈ P1, there exists an automorphism
ψ : P1 → P1 mapping w1, w2, w3 to 0, 1, ∞. If none of w1, w2, w3 is ∞, then we can
simply take

ψ(z) =
(w2 − w3)(z− w1)

(w2 − w1)(z− w3)
,

and there is a similar formula if one of the points is ∞.

Thus, given any map ϕ : X → P1 ramified only above 3 points w1, w2, w3, we can post-
compose with ψ to obtain the map ψ ◦ ϕ that is ramified only above 0, 1, ∞.

The reverse direction was known before Belyi’s paper, but requires some more theory
about the Galois action. We will prove the forward implication, which is the direction
due to Belyi. Assume that X is defined over Q and choose defining equations for X with
coefficients in Q. The outline of the proof is the following.

(1) Choose any morphism f : X → P1. Then f will be ramified over some finite set of
points B defined over Q.

(2) Use the minimal polynomials of the elements of B to construct a polynomial h such
that h ◦ f is ramified only over points defined over Q.

(3) By the previous step, we may assume that B ⊆ Q ∪ {∞}. We find a polynomial
that “squishes” two of the ramification values together without introducing any
further ramification. More precisely, if

B = {0, 1, ∞, λ1, . . . , λk} ,

we find a polynomial gλ1 ∈ Q[x] such that gλ1 ◦ f has strictly fewer ramification
values, namely

{0, 1, ∞, gλ1(λ2), . . . , gλ1(λk)} .

We then apply the same process for λ2, . . . , λk until the resulting map is ramified
only above {0, 1, ∞}.

Before we dive into the proof, let’s consider an example illustrating step (3). Let

E : y2 = x(x− 1)(x− λ)

where λ ∈ Q and 0 < λ < 1. Then we can write λ =
m

m + n
for some m, n ∈ Z≥1. Now

E is certainly defined over Q (over Q, even), so by Belyi’s Theorem, we should be able to
find a Belyi map ϕ : E → P1. Take as our starting morphism in step (1) the function x,
i.e., (x, y) 7→ x. Note that x is ramified exactly over the values 0, 1, λ, ∞. We now want to
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“squish” these values together as in step (3). Define the polynomial

gλ(x) =
(m + n)m+n

mmnn xm(1− x)n .

Lemma 6. Considered as a morphism P1 → P1, gλ satisfies the following properties.
(1) gλ is ramified only at the points 0, 1, ∞, λ.
(2) gλ(0) = 0, gλ(1) = 0, gλ(∞) = ∞, and gλ(λ) = 1.

Proof. The first 3 equalities of (2) are clear. Note that

1− λ = 1−
(

m
m + n

)
=

m + n
m + n

− m
m + n

=
n

m + n
so

gλ(λ) = gλ

(
m

m + n

)
=

(m + n)m+n

mmnn

(
m

m + n

)m ( n
m + n

)n
= 1 .

Observe that
d

dx
xm(1− x)n = mxm−1(1− x)n − xm · n(1− x)n−1

= xm−1(1− x)n−1(m− (m + n)x) .

So gλ ramifies exactly at ∞ and the points x where g′λ(x) = 0, which are the zeroes of the

polynomial above, namely 0, 1, and
m

m + n
= λ. �

Thus by post-composing with gλ, we obtain the morphism

ϕ : E x→ P1 gλ→ P1

which is ramified exactly at the points (0, 0), (1, 0), (λ, 0), ∞ ∈ E, which map to 0, 0, 1, ∞ ∈
P1, respectively. Thus ϕ is only ramified above 0, 1, ∞, so it is a Belyi map.

For step (2) in the outline above, we will need the following lemma.

Lemma 7. Let f : X → Y and g : Y → Z be nonconstant morphisms of Riemann surfaces. Then

Branch(g ◦ f ) = Branch(g) ∪ g(Branch( f )) ,

where Branch( f ) is the set of branch values of f .

Proof. This basically follows from the chain rule. Suppose P ∈ X and U is a chart contain-
ing P with local coordinate z. Let z0 = z(P) and let f̂ and ĝ be the local representations of
f and g near P and f (P), respectively. Then P is a ramification point of g ◦ f iff

0 = (ĝ ◦ f̂ )′(z0) = ĝ′( f̂ (z0)) f̂ ′(z0) .

If f̂ ′(z0) = 0, then P is a ramification point of f , so f (P) ∈ Branch( f ) and hence g( f (P)) ∈
g(Branch( f )). If ĝ′( f̂ (z0)), then f (P) is a ramification point of g, so g( f (P)) ∈ Branch(g).

�
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Proof. Assume that X is defined over Q and choose defining equations for X with coeffi-
cients in Q. Choose any morphism f : X → P1. Then f is ramified over some finite set of
values

B0 = {b0, . . . , bs}
in Q ∪ {∞}. If B0 ⊆ Q ∪ {∞}, we are done; otherwise, let m1(T) ∈ Q[T] be the minimal
polynomial of b0, . . . , bs (excluding ∞), i.e., m1 is the monic polynomial of minimal degree
such that m1(bj) = 0 for each j. By Lemma (7), the set of ramification values of m1 ◦ f is

B1 := Branch(m1 ◦ f ) = Branch(m1) ∪m1(Branch( f ))

= {m1(ζ) ∈ C : m′1(ζ) = 0} ∪ {0, ∞} .

If B1 ⊆ Q∪ {∞} we are done; otherwise, let m2 be the minimal polynomial of

Branch(m1) = {m1(ζ) ∈ C : m′1(ζ) = 0} .

Then
deg(m2) ≤ deg(m′1) ≤ deg(m1)− 1 .

Again by Lemma (7), the set of ramification values of m2 ◦m1 ◦ f is

B2 := Branch(m2 ◦m1 ◦ f ) = Branch(m2) ∪m2(Branch(m1 ◦ f ))

= {m2(ζ) ∈ C : m′2(ζ) = 0} ∪m2(B1) .

Note that m2(B1) ⊆ Q ∪ {∞} by construction; indeed m2(B1) = {0, ∞, m2(0)}. If B2 ⊆
Q∪ {∞} we are done; otherwise, let m3 be the minimal polynomial of

Branch(m2) = {m2(ζ) ∈ C : m′2(ζ) = 0} .

As before, we have
deg(m3) ≤ deg(m′2) ≤ deg(m2)− 1 .

Proceeding inductively, we construct a sequence of polynomials m1, m2, m3, . . . such that

deg(m1) > deg(m2) > deg(m3) > · · · .

Thus after finitely many steps, we obtain a polynomial m` of degree 1, at which point we
obtain

B` = Branch(m` ◦ · · · ◦m2 ◦m1 ◦ f ) ⊆ Q∪ {∞} ,
as desired.

Thus by the previous paragraph (step (2)), we may assume that Branch( f ) ⊆ Q∪ {∞}.
We now proceed with step (3) as in the example. Applying a Möbius transformation, we
may move three of the branch values of f to 0, 1, ∞. Thus we may take

Branch( f ) = {0, 1, ∞, λ1, · · · , λk} ⊆ Q∪ {∞} .

Applying the Möbius transformations x 7→ 1− x and x 7→ 1/x, we may further assume
that 0 < λ1 < 1. (Note that these two transformations preserve the set {0, 1, ∞}.) Post-
composing with gλ1 , we obtain the morphism gλ1 ◦ f with branch values

Branch(gλ1 ◦ f ) = {0, 1, ∞, gλ1(λ2), . . . , gλ1(λk)} ⊆ Q∪ {∞}
which contains strictly fewer values than Branch( f ). Proceeding inductively (next we
would take ggλ1

(λ2) ◦ gλ1 ◦ f ), we obtain a morphism ϕ : X → P1 ramified only above
0, 1, ∞. �

5



[Show Example 3.4, p. 173 of GGD. Then show Belyi’s original proof in On Galois
extensions of a maximal cyclotomic field.]
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